The powerful solution to integrate storage and retrieval of chemical structures and reactions into a relational Oracle® environment
1 Introduction

1.1 Overview of Cartridge Features

InfoChem’s Chemistry Cartridge IC-CARTRIDGE is a powerful software module, designed to integrate storage and retrieval of chemical structures and reactions into a relational Oracle® environment. IC-CARTRIDGE uses one of the fastest search and indexing algorithms for structures and reactions. Using the InfoChem cartridge you can import, register, normalize, edit, index and search chemical structures and reactions. IC-CARTRIDGE takes advantage of Oracle®’s basic technologies. Structural and factual data can be seamlessly integrated in an unrestricted, open Oracle® environment. Easy access is granted via various database connection standards like ADO, ODBC and JDBC.

Any existing Oracle® database with structure or reaction data in LOB columns and standard format can be indexed immediately – no data conversion is required. Unicode support is provided.

IC-CARTRIDGE offers the following functionalities:

- New Oracle® indextypes and chemistry search operators for

 Molecules:
 - Various exact structure search operators (isotopes, tautomers or salts can be included in an exact search)
 - Substructure and inverse substructure search
 - Similarity search
 - "All-in-one" search operator (hit list ordered by relevance)
 - Sophisticated sum formula search

 Reactions:
 - Various exact reaction search operators (search for reaction subsets or stereo- and isotope derivates can be included)
 - Reaction Substructure Search
 - "All-in-one" search operator (hit list ordered by relevance)
 - Various Reaction Type Searches (based on InfoChem’s ClassCodes)

- Comprehensive query feature support for substructure searches
- R-group search (exact and substructure)
- Chemistry toolbox
- Support of chemical standard formats like MOL, RXN, SMILES
 (for further formats a conversion library is available)
1.2 New Features in Version 2.6

The new features in ICCARTRIDGE version 2.6 make the well-proven InfoChem cartridge even better. In particular the enhancements in reaction handling in version 2.4 and the new features in this version show the leading role of InfoChem in chemical information management.

- Significantly enhanced performance for reaction queries
 (version 2.4 feature, see diagram in chapter 3)
- Visualization functions for reaction types
- Faster generation of reaction types: all three spheres returned with one function call
- Support of MOL format in query for role search operators
 (XRSRCT, XRSPRD, IXRSRCT, IXRSPRD)
- New molecule exact search operators XSSEZ, RXSS
- New “all-in-one” structure search operator (SSA)
 The new operator retrieves results from exact, substructure and similarity search ordered by relevance performing only one query
- Calculation of InChI and InChI key
- Calculation of elemental composition
- Extended getHashCode function (optional EZ stereo chemistry included)
- Extended import functionality: - optional normalization and auto mapping included
 - Oracle date type supported
1.3 New Features in Version 2.7

The new features in ICCARTRIDGE version 2.7 show the outstanding role of InfoChem and the ongoing enhancement in reaction handling and retrieval. With the new reaction search operators it is much easier to submit a reaction query and to retrieve the desired records. The input and knowledge of special reaction query features is no longer necessary.

- Calculation of InChI and InChI key with new InChI version released in June 2010
- New reaction role search operators
 Reactant not Product (RCTNOTPRD) and Product not Reactant (PRDNOTRCT)
- New “all-in-one” reaction search operator (RSA)
 The new operator retrieves results from exact, combined reaction substructure with reaction type and different reaction type searches ordered by relevance performing only one query
- Combined RSS (reaction substructure) / RT (reaction type) search
 This sophisticated operator makes the input of complicated query features like atom-atom mappings and bond reaction centers unnecessary. The combination of reaction substructure search with the reaction type search (based on InfoChem Classify algorithm) results in hit records with the given reaction substructure and the given reaction type.
- New “all-in-one” reaction search operators for reaction types
 The new reaction type operators RTS_ALL and RSS_RT_ALL combine results from the three single sphere operators and order them by relevance in one query.
1.4 New Features under Development

New developments prove InfoChem’s expertise in meeting the requirements of modern chemists in a more and more complex scientific world.

- Extended structure representation for database structures and reactions - not fully defined structures like variable points of attachment in rings or chains, undefined R-Groups, optional R-Groups – Markush support
- “All-in-one” search operator for reactions (RSA)
- Sophisticated handling of multi step reactions - automatic multi step reaction analysis for reaction records (scheme support)
- Recognition of Named Reactions
- Configuration tools for user defined standardization and reaction mapping rules
- Enhanced structure and reaction plausibility checking
2 **ICCARTRIDGE Components**

ICCARTRIDGE consists of new indextypes with associated search operators for chemical structures and reactions and a chemistry toolbox with various methods and functions.

2.1 MOL_INDEXTYPE

- Basic indextype for structures
- Storage of chemical structures in a CLOB- or BLOB-field in any table
- Access via standard SQL (see chapter 4.1 for examples)
- The following operators are provided for the MOL_INDEXTYPE:

 - **SSA**: “All-in-one” structure search
 - **SSS**: substructure search operator
 - **ISSS**: inverse substructure search operator
 - **XSSEZ**: exact structure search operator, including E/Z stereochemistry
 - **XSS**: exact structure search operator
 - **RXSS**: relative exact structure search operator
 - **IXSS**: operator for exact search, including stereo- and isotope derivates
 - **TXSS**: operator for exact search, including tautomers
 - **PXSS**: operator for exact search of parents of salt molecules
 - **CompXSS**: operator for exact search of molecule components
 - **FlexXSS**: operator for most flexible exact search
 - **MSIMFP**: operator for similarity search
 - **SFS**: sum formula search operator
 - **XSFS**: exact sum formula search operator

2.2 CHEMSTOR_INDEXTYPE

The ChemStorage is a predefined data model for structures:

- Storage of chemical structures in a separate table in the cartridge schema
- Structure access is completely encapsulated by views
 and the ICCARTRIDGE Interface (*iccart.method (...)*) (see chapter 4.3 for examples)
 => automatic registration and normalization possible
- Only a subset of the MOL_INDEXTYPE operators are provided
- The support of the ChemStorage may be discontinued completely in future versions
2.3 RXN_INDEXTYPE

- Indextype for reactions
- Atom-atom-mapping and reaction center information can be generated with cartridge tools
- Storage of chemical reactions in a CLOB- or BLOB-field
- Access via standard SQL (see chapter 4.2 for examples)
- The following operators are provided for the RXN_INDEXTYPE:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSS</td>
<td>reaction substructure search operator</td>
</tr>
<tr>
<td>XRS</td>
<td>reaction exact match operator</td>
</tr>
<tr>
<td>XRSSUB</td>
<td>reaction subset exact match operator</td>
</tr>
<tr>
<td>XRSCRT</td>
<td>reaction reactant exact match operator</td>
</tr>
<tr>
<td>XRSPRD</td>
<td>reaction product exact match operator</td>
</tr>
<tr>
<td>IXRS</td>
<td>reaction exact match operator</td>
</tr>
<tr>
<td>IXRSSUB</td>
<td>reaction subset exact match operator</td>
</tr>
<tr>
<td>IXRSRCT</td>
<td>reaction reactant exact match operator</td>
</tr>
<tr>
<td>IXRSPRD</td>
<td>reaction product exact match operator</td>
</tr>
<tr>
<td>RCTNOTPRD</td>
<td>reactant not product role operator</td>
</tr>
<tr>
<td>PRDNOTRCT</td>
<td>product not reactant role operator</td>
</tr>
</tbody>
</table>

Available only with the optional module ICCART_RXNTYPE:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>“All-in-one” reaction search</td>
</tr>
<tr>
<td>RSS_RT_[SPHERE]</td>
<td>Combined RSS/RTS Search Broad/Medium/Narrow</td>
</tr>
<tr>
<td>RSS_RT_ALL</td>
<td>Combined RSS/RTS Search for all three spheres</td>
</tr>
<tr>
<td>RTS_[SPHERE]</td>
<td>Reaction Type Search Broad/Medium/Narrow</td>
</tr>
<tr>
<td>RTS_ALL</td>
<td>Reaction Type Search for all three spheres</td>
</tr>
<tr>
<td>RXCCLUSTER_[SPHERE]</td>
<td>Reaction Center Cluster Search Broad/Medium/Narrow</td>
</tr>
</tbody>
</table>
2.4 Chemistry Toolbox

ICARTRIDGE provides advanced chemistry tools, which are accessible via standard SQL and PL/SQL interfaces. Thus these tools can be very easily integrated into your applications.

- Sophisticated import/export routines; simultaneous import of structures/reactions and associated data from MDL SDFiles and RDFiles into any relational data model is possible
- Calculation of InChI and InChI key
- Calculation of molecule properties like various molecular masses and chemical formulas
- Calculation of stereo descriptors
- Standardization of chemical structures and reactions (standardization rules can be customized)
- Calculation of unique structure identifiers
- Highlighting of query in structure and reaction records
- Functions providing access to single reaction member
- Enhanced atom-atom-mapping function (only in the optional module ICCART_RXNMAP)
- Reaction type classification functions (only in the optional module ICCART_RXNTYPE)
- Visualization functions for reaction type (only in the optional module ICCART_RXNTYPE)
3 Performance

System for reaction and structure search performance tests:

- AMD Opteron processor 146, 2.01 GHz, 4.00 GB RAM
- Windows 2003 Server
- Oracle 10.1.0.4.0

3.1 Reactions

Data set: Table SPRESI_RXN with 1,061,207 records containing reactions

Index creation without additional parameters. The default parameter NORMALIZE=NO is used.

ICCARTIDGE performance enhancements in version 2.4.0
SQL-statement for query:

```sql
SELECT COUNT(*)
FROM SPRESI_RXN a
WHERE RSS(a.REACTION, iccart.ReadRxnFile(...), 'RXN') = 1;
```

<table>
<thead>
<tr>
<th>No</th>
<th>query</th>
<th>hits</th>
<th>time [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>360</td>
<td>1.7</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>223</td>
<td>1.2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>4334</td>
<td>7.8</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>889</td>
<td>0.8</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>656</td>
<td>0.4</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>374</td>
<td>0.2</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>4436</td>
<td>2.1</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>187</td>
<td>4.3</td>
</tr>
</tbody>
</table>
3.2 Molecules

Data Set: Table SPRESI_MOL with 1,057,341 records containing molecules

Index creation without additional parameters. The default parameter `NORMALIZE=NO` is used.

SQL-statement for query:

```sql
SELECT COUNT(*)
FROM SPRESI_MOL a
WHERE SSS(a.MOL, iccart.ReadMolFile(...), 'MOL') = 1;
```

<table>
<thead>
<tr>
<th>query</th>
<th>hits</th>
<th>time [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ethylsulfoxide]</td>
<td>211</td>
<td>0.23</td>
</tr>
<tr>
<td>[chiral]</td>
<td>247</td>
<td>0.1</td>
</tr>
<tr>
<td>[fluorine, chlorine, bromine]</td>
<td>4736</td>
<td>3.66</td>
</tr>
<tr>
<td>[benzene, sulfoxide]</td>
<td>22</td>
<td>0.1</td>
</tr>
<tr>
<td>[chiral]</td>
<td>565</td>
<td>0.4</td>
</tr>
<tr>
<td>[phenol]</td>
<td>12846</td>
<td>4.6</td>
</tr>
</tbody>
</table>
4 Syntax-Examples

4.1 Molecule Indextype

1. Fill table(s) with structures (CLOB-field) and data

2. Create index on the structure field

```sql
CREATE INDEX IDX_STRUCTURE ON TEST_TABLE (STRUCT) INDEXTYPE IS C$ICHMMOL1.MOL_INDEXTYPE;
```

3. Search using an InfoChem structure operator (SSS, XSS, IXSS, TXSS, PXSS, FlexXSS) and retrieve structure or other chemical information:

```sql
SELECT iccart.getFormula(a.STRUCT) 
  FROM TEST_TABLE a 
  WHERE SSS(a.STRUCT, iccart.readMolFile(...), 'MOL') = 1
```

4.2 Reaction Indextype

1. Fill table(s) with reactions and data (e.g. via RDFFile import)

 1. Fill control table with import rules
 2. Import reactions and data

```sql
BEGIN
  ICCART.ImportRDFile('RXN_TEST', 'C:\temp', 'reaction.rdf');
END;
```

2. Create index on the reaction field

```sql
CREATE INDEX IDX_RXN ON RXN_TEST (RXN) INDEXTYPE IS C$ICHMMOL1.RXN_INDEXTYPE;
```

3. Search the reaction substructure via standard SQL

 e.g. a reaction substructure in one specific solvent

```sql
SELECT a.RIREG, a.RXN 
  FROM RXN_TEST a, SOLVENT b 
  WHERE RSS(a.RXN, iccart.readRxnFile(...), 'RXN') = 1 
    AND XSS(b.STRUCTURE, iccart.readMolFile( ), 'MOL') = 1 
    AND a.RIREG = b.RIREG
```
5 System Requirements

Hardware:
Windows/Linux: Pentium III or higher; > 1 GHz recommended
SUN Solaris: SPARC > 700 MHz recommended
up to one million structures: 512 MB additional RAM
for every further million structures: 512 MB additional RAM
up to one million reactions: 800 MB additional RAM
for every further million reactions: 800 MB additional RAM
up to one million structures/reactions: 4 GB free disk space
for every further million structures/reactions: 4 GB additional disk space

Software:
Operating system: Windows 2000
Windows XP
Windows Server 2003
Windows Server 2008
SUN Solaris 8 or higher, 32 / 64 Bit Version
Linux RHEL
Database: Oracle 9.2
Oracle 9.2 (64 bit) for SUN Solaris 64 bit
Oracle 10.1
Oracle 10.1 (64 bit) for SUN Solaris 64 bit
Oracle 10.1UNICODE character set (verified for Windows)
Oracle 10.2
Oracle XE (verified for Windows)
Oracle 11.1 (verified for Windows)
Oracle 11.2 (verified for Windows and Linux (RHEL))